Positive-Definite Sparse Precision Matrix Estimation
نویسندگان
چکیده
منابع مشابه
Bayesian estimation of a sparse precision matrix
We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p is large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the gr...
متن کاملSparse Precision Matrix Estimation with Calibration
We propose a semiparametric method for estimating sparse precision matrix of high dimensional elliptical distribution. The proposed method calibrates regularizations when estimating each column of the precision matrix. Thus it not only is asymptotically tuning free, but also achieves an improved finite sample performance. Theoretically, we prove that the proposed method achieves the parametric ...
متن کاملAutomatic positive semi-definite HAC covariance matrix and GMM estimation
This paper proposes a new class of HAC covariance matrix estimators. The standard HAC estimation method re-weights estimators of the autocovariances. Here we initially smooth the data observations themselves using kernel function based weights. The resultant HAC covariance matrix estimator is the normalised outer product of the smoothed random vectors and is therefore automatically positive sem...
متن کاملActive Positive-Definite Matrix Completion
In the FindCandidates function (line 4), Select finds all the single edges that can be added to the current mask graph GΩ while maintaining its chordal structure. To do that, we make use of the clique tree data structure as introduced by Ibarra [1]. Given a graph G = (V,E), the clique tree is a tree C = (VC , EC), in which each node is a maximal clique of G, i.e., VC ⊂ 2 . In our case the numbe...
متن کاملSparse Precision Matrix Estimation via Lasso Penalized D-Trace Loss
We introduce a constrained empirical loss minimization framework for estimating highdimensional sparse precision matrices and propose a new loss function, called the D-trace loss, for that purpose. A novel sparse precision matrix estimator is defined as the minimizer of the lasso penalized D-trace loss under a positive-definiteness constraint. Under a new irrepresentability condition, the lasso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2017
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2017.71002